What is Cost-Risk?

presented to
NASA RISK MANAGEMENT CONFERENCE
6 DEC 05

David R. Graham

OUTLINE

- What is Cost-Risk?
- Common Definition
- Cost Estimator Definition
 - Assessment
 - Cost Estimating Relationship (CER) Risk
 - Cost Driving Parameter Risk
 - Key Engineering Parameter Performance (KEPP) Risk
 - Correlation Risk
 - Analysis
 - Convolution (e.g., analytic; monte carlo)

Common Definition

- "The potential for final costs to exceed the target cost"
- ...something like that anyway

Cost Estimator's Definition

- "Cost-risk is composed of five elements:
 - -CER Risk
 - Input Parameter Risk
 - Key Engineering Parameter Performance (KEPP) Risk
 - -Correlation Risk
 - Convolution of Distributions
- These type of risks are intended to be "known unknowns"

Cost-Risk Assessment & Analysis

- Assessment
 - 1. Cost model risk
 - Cost estimators handle this
 - 2. Input parameter risk
 - Engineering assessment needed
 - 3. Key Engineering Parameter Performance (KEPP) risk
 - Engineering assessment needed
 - 3 WBS element risk profiles (pessimistic, optimistic & reference) evaluated in terms of cost-risk drivers
 - 4. Correlation risk
 - Engineering/cost estimator assessment needed
- Analysis
 - Convolve all distributions for "S"-curve (CDF)

Cost-Risk Assessment

1. Cost model risk

 Accomplished in ESAS FY 06-11 cost-risk

2. Input parameter risk

 Accomplished in ESAS FY 06-11 cost-risk

Cost Model and Input Parameter Risk Cost Quantification

Cost-Risk Assessment (cont)

- 3. Key Engineering Parameter Performance (KEPP) risk
 - A Key Engineering Performance Parameter is a technical or operational parameter that can be described as a requirement
 - Partially Accomplished in ESAS FY 06-11 cost-risk
 - Adds cost-risk impacts due to TRL,
 Design/Engineering, Integration, Requirements
 Stability, Complexity, etc., risks
 - Relative Risk Weighting process & NAFCOM can capture these risks

Key Engineering Performance Parameters¹ (KEPP) Examples

- KEPPs for new electronic component for a S/C
 - Dynamic load resistance
 - Operating voltage
 - Power regulation
 - Radiation resistance
 - Emissivity
 - Component mass
 - Operating temperature range
 - Operating efficiency
- KEPPs for a Laser/Amplifier Transmitter
 - Wave front sensing
 - Wave generation
 - Mirror coatings and gratings
 - Autonomous resonator alignment
 - Bore sighting
 - Electrical power generation

¹The Technology Puzzle: Quantitative Methods for Developing Advanced Aerospace Technology; Liam Sarsfield (RAND)

RRW Implemented in Excel

(Degree System's KEPPs Impacted by Cost-Risk Drivers in each Scenario)

			COST	-RISK DRIVE	ERS		
		<u>TRL</u>	Des/Eng	<u>Schedule</u>	<u>Integration</u>	Reqts Stab	
	(Driver Weights) -	0.2	0.3	0.15	0.2	0.15	Risk Score
WBS Scenarios {	Pessimistic	0.048	0.111	0.058	0.049	0.080	0.345
	Reference	0.020	0.027	0.026	0.016	0.014	0.102
	Optimistic	0.014	0.023	0.007	0.016	0.011	0.071
	_ / / /	TRL	Des/Eng	<u>Schedule</u>	<u>Integration</u>	Regts Stab	
	Very High	0.397	0.370	0.385	0.442	0.534	
	High	0.240	0.220	0.262	0.243	0.216	
	Moderately High	0.139	0.150	0.171	0.142	0.094	Ratio Scale
Intensities <	Moderate	0.099	0.089	0.078	0.081	0.070	Numbers from
	Moderately Low	0.070	0.075	0.049	0.047	0.044	AHP
	Low	0.033	0.054	0.034	0.026	0.026	
	_Very Low	0.022	0.042	0.021	0.019	ر 0.016	
	Pess/Reference	3.4					
	Ratio:	0. .					
	Opt/Reference Ratio:	0.7		0.7*Ref R	ef		3.4*Ref

Cost-Risk Assessment (cont)

4. Correlation risk

Accomplished in ESAS

CORRELATION

- What is Correlation?²
 - A measure of association between two variables
 - It measures how strongly the variables are related, or change, with each other
- Engineers and CRM specialists can assist cost estimators in identifying and quantifying correlation between WBS elements or systems

Correlation

- Dr. Stephen Book (MCR) plotted the theoretical underestimation of percent total cost standard deviation (y-axis) when correlation (x-axis) is assumed to be zero rather than its true value, ρ .
 - In cost estimates we would underestimate % SD ~60%-80% if we ignored correlation and it was actually 0.2

% Underestimated
Theoretical
Total
Cost Standard Deviation

From: 1999 Cost Risk Analysis Seminar, Manhattan Beach, CA

Cost-Risk Analysis

- Analysis
 - –Convolve all distributions for "S"-curve (CDF)

Cost-Risk Analysis: Convolution

